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1t is shown how simple integration rules can be associated with the Fast Fourier
Transform technique in order to obtain accurate results without reducing essentially
the speed of computation. The results of several numerical experiments are presented.

1. INTRODUCTION

Due to the widespread use of the Fourier Transform, it is very important to
have methods for numerical calculation, that are both fast and accurate. In practice
we do not compute the infinite Transform of a time-function f(¢) but the Finite
Transform

P(w) = | :f(t) eiot dt, (1)

the function f(¢) being known only at a finite number of equidistant points
t; =jdt = jTIN, j=0,1,.,N—1 2

When ¢(w) is wanted at a large number of equally spaced points, the computing-
time of (1) is tremendously reduced by using the Fast Fourier Transform technique
(F.F.T.) proposed by Cooley and Tukey [1]. The integral (1) is approximated by

() = (TIN) T f() e, @)

and calculated for the following values of w:
wy, =k dw = kQn/T), k=0,1,.,N—1, C))

N being a power of 2. When the data are noisy, e.g., when working with rounded
numbers, the F.F.T. gives a total error smaller than when summing directly, the
improvement ratio being proportional to N/log N [2].
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The numerical integration rule represented by (3) is a very crude one, the
truncation error E being proportional to Ar = T/N. As it has been shown by
Cooley, Lewis and Welch [3], if the function f(¢) has additional properties the
order of the method is higher; e.g., if f(0) = f(T) (3) becomes the usual trapezoidal
rule so that F = O((4t)?) or if the odd-order derivatives f'(¢), f"(¢),..., f @ (1)
are equal at the end-points 0 and 7, then (3) is equivalent to the trapezoidal rule
with end corrections and E = O((4r)?*+1).

If the function f(¢) has none of these properties and one needs a better accuracy,
one uses a higher order numerical quadrature formula, the classical one for this
type of integral being that proposed by Filon [4], with a truncation error
E = O((d1)%).

It seems therefore that, except in particular cases, either one can compute the
Finite Transform very fast but then the accuracy is low, or else one obtains higher
accuracy but then the speed is drastically reduced. Mandel and Bearman [5]
proposed methods to reconciliate speed and accuracy by associating the F.F.T.
with a modification of an integration formula based on the trapezoidal rule and
also with Filon’s method. They also compared the accuracy of the results obtained
by using these techniques.

In the present paper we show with illustrative examples how known numerical
techniques associated with the F.F.T. give very accurate results without reducing
essentially the computational speed.

2. THE F.F.T. AND INTEGRATION RULES WITH EQUIDISTANT NODES

As has been mentioned previously, if f(0) = f(T), (3) is equivalent to the
trapezoidal rule, as for the values (4) of w, the integrand of (1),

F(@) = f() e, (5)

has equal values at the end-points of the integration interval t, =0 and fy = 7,
so that

Dy(w) = 4t Z F(t;) = 4t [1)2[F(ty) + F(tw)] + Z F(t)g (6)

In fact, the imaginary part of the integrand has equal values at the end-points

even if f(¢) does not, and this explains why the F.F.T. gives more accurate results

for the 1mag1nary part of the Transform &, = — foT f(¢) sin wt dt, than for the
real part @, = f f(t) cos w dt.

Suppose that we know the value of f(¢) for ¢ = 5. Then, the auxiliary function

g0) = 10— LDZLO 4 ™
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obtained from f(¢) by removal of a linear trend has equal values at the end-points
so that the real part of the transform ¥Y(w) = IOT g(t) et dt will be calculated
by the F.F.T. according to the trapezoidal rule. Lanczos [6] proposed the removal
of the linear trend in order to improve the convergence of the Fourier series of f (¢).
As it turns out, this operation has an improving effect also on the accuracy of the
Fourier coefficients. The imaginary part will be calculated even with a better
accuracy, as the corresponding integrand G(¢f) = g(¢) sin wt satisfies also the
condition G’(0) = G'(T). The Fourier Transform ®(w) will be then obtained from

o ¥ Y[ —eer (L)

e—in

O[T ], (8)

It
By using this procedure (let us call it “trapezoidal F.F.T.”) we improve accuracy
without reducing essentially the speed of calculation, the number of additional
arithmetic operations needed being proportional to the number of integration
points N. It may happen in practice that the trapezoidal F.F.T. even reduces
the number of operations as it gives a much better accuracy with a smaller number
of integration points.
In order to associate the F.F.T. technique with higher-order integration for-
mulas we introduce the auxiliary function

h(t)) = o;8(8), (€)

where «; are proportional to the weights of some integration rule with equidistant
nodes for calculating ¥(w)

T ) N-1 ] N-1 )
Y(w) = j &) etdt ~ Y agt) e = Y () e Y, (10)
=0 =0

The last sum is of the form (3) and the F.F.T. can be applied.
We experimented with two composite integration rules based on higher-order
closed Newton—Cotes formulas: the Simpson rule and the 5-points rule

[7 100 dx = 22 1p, + 3204 127 + 3200+ 70, (1)

the truncation error being O(4*) and O(h®), respectively. The results shown
illustrate the known fact that the Newton—Cotes formulas are less accurate when
large numbers of points are used and should be avoided.
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3. NUMERICAL RESULTS

Values of the imaginary part of the Transform @,(w) as calculated by using
the methods described previously and compared with those given by Filon’s
method, the usual F.F.T. and the exact ones for the function f(f) = 7 cos wyt,
are shown in Tables I and 11. This function was considered for illustrating numerical
integration procedures by Davis and Rabinowitz [7]. In Table I, w, = 1, while
in Table I, w, = 50. In Table IIl are shown values of the real part of the Trans-
form @g(w) for the same function, for w, == 50. The vertical lines within the num-
bers appearing in the tables mark the end of the string of digits that coincide with
those in the exact solution.

Although the numbers shown in the tables speak for themselves, we want to
stress the following general points.

For moderate values of w, the trapezoidal F.F.T. is almost as accurate as Filon,
while higher order composite formulas associated with the F.F.T. are more
accurate, as it should be. For large values of w or for a very oscillatory integrand,
the Filon’s method (even for 8 = w 4t < 1) as well as the higher-order methods
are so inaccurate that even the order of magnitude of the result is wrong so that
the only method to be used seems to be the trapezoidal F.F.T. The results for
large w calculated by using Filon’s method are given only for the sake of compari-
son, as this method is most accurate and useful when f(¢) is a reasonably smooth
function.

4. THE ROMBERG INTEGRATION

Computing the Fourier Transform ¥(w) of g(r) instead of f(¢) has an additional
advantage: One can improve the accuracy by using the Romberg procedure,
i.e., by building the sequence

I = @R — N — (12)

for several values of k, where / 53: is the result given either by the simple trapezoidal
rule or by the trapezoidal rule with end-corrections with N; integration points and

Ny = 2N, (13)

For illustration, we give in Table IV some values of the imaginary part of the
Transform for f(t) =t cos wyt with w, = 50. Here we have to take k, = 1.
In Table V are given the values of the real and imaginary parts of the Transform
for the function f(t) = e sin Bt for o« = 0.1, B = 0.5. For the real part of the
Transform, k, = 0, and for the imaginary part, k, = 1.
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